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Two Lagrangian-mean measures crucial to the accurate estimation of mean particle
velocities in wavy or turbulent shear flows are considered. The measures are the
pseudomomentum and generalized Stokes drift and of particular interest is their
expression in terms of quantities directly measurable by fixed instruments. To proceed,
the measures are first calculated for broad spectra of progressive symmetric rotational
wave pairs of small amplitude. Both discrete and continuous spectra are considered
and the waves may grow or decay. The expressions are then cast into a form composed
of quantities that are measurable in a fixed reference frame, such as the surface slope
spectrum of surface gravity waves or space–time velocity correlations in the interior
of wavy shear flows. Finally, an example is given in which the measures are calculated
for a plane channel flow subject to a broad spectrum of discrete progressive waves,
specifically a numerical simulation of turbulent channel flow. It is seen that while the
streamwise component of pseudomomentum is everywhere negative in the flow, the
generalized Stokes drift changes sign, giving rise to an enhanced mass transport close
to the boundary and a reduction in transport some distance from it. The sign change
occurs 12.5 viscous units from the wall, near the centre of a 15 viscous units thick
highly sheared layer of Stokes drift.

1. Introduction
Mean particle velocities in wavy and turbulent shear flows differ from the mean

Eulerian flow, yet while the latter is directly measurable by fixed instruments, the
former Lagrangian mean is not. Nevertheless, it is important to be able to make
credible estimates of mean particle transport, be it in the shear flow beneath surface
waves or in the turbulent flow near a rigid boundary. This paper is concerned with
the difficult question of how to express specific Lagrangian mean quantities, namely
the pseudomomentum and generalized Stokes drift, in terms of quantities directly
measurable by fixed instruments. Only by achieving this can credible estimates then
be made of the mean particle velocity in wavy or turbulent flow and thus of how it
differs from the mean Eulerian velocity.

Formally, the pseudomomentum and generalized Stokes drift are measures of the
nonlinear interaction of the fluctuations with themselves and supporting shear flow.
We calculate them for broad spectra of small-amplitude progressive rotational O(ε)
waves. The measures arise in Andrews & McIntyre’s (1978, hereinafter referred to as
AM) generalized Lagrangian mean (GLM) formulation, which is an exact theory of
nonlinear waves on a Lagrangian mean flow. GLM is compelling because it describes
Lagrangian aspects of fluid motion from an Eulerian framework; a feature that has
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led to its use in studies ranging from the interaction of internal and inertial waves
(Broutman & Grimshaw 1988) to transport processes in oceanic (Gent et al. 1995)
and atmospheric chemistry (Mahlman 1997), to the dynamics of barotropic storm
tracks (Swanson, Kushner & Held 1997).

Also compelling is that GLM-theory describes mean vorticity kinematics in the
same way as instantaneous vorticity kinematics are described; this enables it to capture
structural details, in contrast to Reynolds or Reynolds–Hussain (Reynolds & Hussain
1970) averaging which masks vorticity kinematics. As an avenue to elucidate structures
which arise in wavy shear flows, therefore, the GLM formulation is canonical; indeed,
not only does it recover the Craik–Leibovich (Craik & Leibovich 1976) equations
when the wave field is irrotational and the shear is weak (Leibovich 1980), but it
makes possible the extension of Craik–Leibovich instability theory when the wave
field is rotational and the shear strong (Craik 1982c). Instability of the wave-mean
interaction is determined, in this instance, by the Craik–Phillips–Shen criterion (Craik
1982c; Phillips & Shen 1996) and the structures that arise are longitudinal vortices
or eddies (see Craik 1982c; Phillips & Wu 1994; Phillips, Wu & Lumley 1996).

However, like the Reynolds-averaged equations, the GLM equations are not closed;
closure requires the aforementioned measures. These, of course, are readily calculable
if the wave field is monotonic or irrotational, but that is not always the case and
to make further progress with instability studies of the type pioneered by Craik, or,
say, in estimating transport characteristics of pollutants in solution or suspension
(Bratseth 1998), we require expressions for the aforementioned nonlinear measures in
a form applicable to any spectrum of waves in a shear flow. Of course, the wavefield
and shear flow cannot be specified arbitrarily, they must together be a solution to
the instantaneous equations of motion, which necessitates a direct simulation prior
to calculating the nonlinear measures.

Alternatively, the measures could be acquired in an experiment. Unfortunately,
direct measurements are unlikely because mean particle velocities or other Lagrangian
averages are not recordable by fixed instruments such as hot-wire or laser-Doppler
anemometers (although particle image velocimetry may be an exception). Nevertheless
such instruments can record Reynolds stresses directly and these are analogous to the
Lagrangian averages or measures we seek.

The object of this paper, therefore, is twofold: first, to obtain expressions for the
measures, specifically the generalized Stokes drift and pseudomomentum, that apply
to any spectrum of rotational waves in a shear flow; and secondly, to cast those
expressions in terms of quantities that are ‘measurable’ in an Eulerian frame, where
‘measurable’ means recordable in an experiment by fixed instruments or calculable
numerically in an Eulerian-field direct simulation.

The importance of the first measure was identified by Rayleigh (1896) as the cause
for acoustic streaming, but it is equally widely known in the context of propagating
surface gravity (or capillary gravity) waves, where it is manifest as a mean drift
velocity in the direction of wave propagation. In this instance it is denoted the Stokes
drift, after Stokes (1847) who predicted it in the absence of mean shear assuming
inviscid theory and irrotational waves. When a sheared mean flow is present, however,
and the waves are rotational, the term ‘generalized Stokes drift’ d is used.

Interestingly, the fluctuating particle motions arising from this O(ε2) nonlinearity
induce no mean Eulerian flow in ideal fluids, but do induce such flow in real fluids.
Indeed, Longuet-Higgins (1953) established that a second-order mean vorticity is
generated in the viscous boundary layer at a free surface (and channel bottom) and
that as its vorticity is diffused, it induces in the interior a non-zero mean Eulerian
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current ū, whose magnitude is greatly affected by surface contamination (Craik 1982a).
Physically, the ensuing mass transport velocity, or Lagrangian mean velocity ūL, is
the sum of ū and d .

Of course this Eulerian current can be further enhanced by external means, such as
wind shear or pressure gradients, but whatever details determine ū, it is desirable to
describe any ensuing wave–mean flow interactions by a set of equations that depict ūL

as the dependent variable. Such equations should also possess conservative properties
analogous to those of the instantaneous Navier–Stokes equations. Following much
effort, this aim was realized in the GLM equations of Andrews & McIntyre; and
inherent therein is the second measure of nonlinear interaction, the pseudomomen-
tum p. Interestingly, although p and d are not in general equal, their irrotational
components concur to O(ε4) (see AM § 6; Craik 1982c), so that only one measure
plays a role when the wave field is irrotational.

Stokes’ expression for a single wavetrain in deep water (see also O.M. Phillips 1966),
was extended to a discrete symmetric spectrum of irrotational water waves of equal
amplitude by Craik & Leibovich (1976), and to a random field of irrotational surface
gravity-waves by Kenyon (1969) and Huang (1971). Craik (1982b, 1985) was the first
to allow for rotational waves and gives general expressions for the pseudomomentum
and generalized Stokes drift in a single train of two-dimensional linear O(ε) waves in
the presence of shear. Attempts to do likewise for statistically stationary fluctuating
fields that exhibit continuous spectra were made by Lumley (1986), Phillips (1988) and
Leibovich (1992), but the ensuing expressions depict behaviour which is divergent and
potentially oscillatory in time. That such features can occur had earlier been foreseen
by Craik (1982b), who notes that they result from an averaged ensemble of particles
initially located on different streamlines or when particles on the same streamline are
unevenly distributed between peaks and troughs. The best way to circumvent such
features, which play no role in the interpretation of the Lagrangian mean velocity, is
to begin the average when the wave amplitude is effectively zero and all particles are
evenly spaced along a streamline of the flow.

Our intent here is to derive general expressions for the pseudomomentum and
generalized Stokes drift which contain only those elements which contribute directly
to the Lagrangian mean velocity; and, in particular, expressions that are valid for
two or three dimensional discrete or continuous spectra of O(ε) rotational waves in
the presence of shear. With such information at hand, we then cast the expressions in
terms of measurable quantities, obtainable either from direct numerical simulation or
experimentally. We begin in § 2 with an outline of GLM and in § 3 consider a discrete
spectrum of symmetric O(ε) rotational wave pairs in strong shear. In § 4 we discuss
measurable quantities and in § 5 generalize our results to a continuous spectrum of
waves. An example is given in § 6 and the work is discussed in § 7.

2. The generalized Lagrangian-mean formulation
2.1. Background

The generalized Lagrangian mean equations in AM are a mapping of Navier–
Stokes into a material frame in which the analogy of mean vorticity is conserved. In
consequence, the equations provide a very general Lagrangian-mean description of the
back effect of oscillatory disturbances upon the mean state, and depict a Lagrangian-
mean velocity field that describes trajectories about which fluctuating particle motions
have zero mean, when any averaging process, be it temporal, spatial, ensemble or
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other, is applied. Moreover, provided the mapping is invertible, the equations are
exact and thus valid for waves of all amplitudes, although for practical purposes they
have so far been restricted to waves of small amplitude, measured by a dimensionless
parameter ε, so that any displacement ξ from the mean trajectory is O(ε) compared
to the wavelength of the wave field.

In order to define an exact Lagrangian-mean operator ¯( )
L
, corresponding to any

given Eulerian-mean operator ¯( ), it is necessary to define with equal generality an
exact, disturbance-associated particle displacement field ξ(x, t). Then, for any scalar
or tensor field, ϕ say, of any rank, it is possible to introduce the mapping x 7→ x+ ξ
and write

ϕ(x, t)
L

= ϕξ(x, t) where ϕξ(x, t) = ϕ(x+ ξ, t).

Then, on choosing a GLM such that ξ(x, t) = 0, there is, for any given Eulerian velocity
u(x, t), a unique Lagrangian-mean velocity, ūL, which is related to the Eulerian-mean
velocity by the generalized Stokes drift d , as ūL = ū+ d . Furthermore, in terms of the
Lagrangian-mean material derivative, D̄L = ∂/∂t+ ūL · ∇, it then follows that

D̄Lξ = u`, (2.1)

where the Lagrangian disturbance velocity u` is given by u`(x, t) = uξ − ūL, such that
ū` = 0.

Cogent, but somewhat different, outlines of the derivation of the GLM equations
are given by Craik (1985) and Leibovich (1992), with complete details in AM.
Specifically, for homentropic flows of constant density ρ in a non-rotating reference
frame, the GLM momentum equation is:

D̄L(ūLl − pl) + ūLk,l(ū
L
k − pk) +Π, l = X̄l ,

Π =
℘̄

ρ
+ Φ̄Ll − 1

2
uξj u

ξ
j .

Here, repeated indices imply summation and commas denote partial differentiation;
furthermore, Φ is the force potential per unit mass, X is a function which allows for
dissipative forces and ℘ is pressure.

Of interest in the present work is the term responsible for nonlinear forcing of the
mean flow, the vector wave property p, whose l th component is

pl = −ξj,lu`j . (2.2)

Physically, the vector p = pl(x, t) is a measure of the nonlinear interaction of the
waves both with themselves and the mean flow; it is denoted the pseudomomentum
or quasi-momentum per unit mass (McIntyre 1988).

2.2. Small-amplitude waves

Our intent is to express pl in terms of Eulerian correlations (velocity or other) that are
measurable experimentally in either discrete or continuous spectra of small-amplitude
rotational waves. For generality, we assume the waves occur in a shear flow, with
which they interact. However, in following such interactions with GLM, we must
be cautious that the mapping from the true Lagrangian to the reference generalized
Lagrangian mean remains invertible. Since this condition is reflected by the Jacobian
J and fails when J = 0 it is prudent to monitor the temporal behaviour of J . We
thus begin by calculating the Jacobian which, for incompressible, Boussinesq flows in
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which ε is characteristic of the initial disturbance, takes the form (AM)

J = 1− 1
2
(ξjξk),jk + O(ε3). (2.3)

Also of interest is the generalized Stokes drift

dl = ξjŭl,j + 1
2
ξjξkūl,jk + O(ε3), (2.4)

which, because the Eulerian fluctuating velocity is ŭ = u(x, t) − ū(x, t), leads to an
expression for the small-amplitude Lagrangian velocity perturbation as

u`j = ŭj + ξkūj,k + O(ε2), (2.5)

thereby permitting the pseudomomentum (2.2) to be written as

−pl = ξj,l ŭj + ξj,lξkūj,k + O(ε3). (2.6)

Of course, to evaluate (2.4) and (2.6) we require the displacement field, given the
wave field. To proceed, we note that D̄Lξj = dξj/dt and employ (2.1) and (2.5); then
ξj(x, t) is given by integration of

dξj
dt

= ŭj + ξkūj,k (2.7)

along mean trajectories

dx

dt
= ūL(x, t).

Unfortunately, evaluating (2.7) is not in general straightforward. However, provided
that ξ is small compared with the radius of curvature of ū, then ū may be treated as
constant for the purposes of integration; and that is the case here, where we envisage
the flow to be predominantly in the x-direction and to be a function of z. Then,
subject to postulate viii of AM’s GLM formulation that ξj vanish at x = x0, t = t0,
we find

dξj
dt

= ŭj + ξ3ū1,3δj1

on, say, x = x0 + ūt+ O(ε2), so that

ξj(x, t) =

∫ t

t0

ŭj[x(ζ), ζ]dζ + δj1ū1,3

∫ t

t0

ξ3[x(ζ), ζ]dζ. (2.8)

3. A discrete spectrum of waves
Consider a small but finite-amplitude three-dimensional disturbance defined by a

discrete spectrum of wavenumbers in a parallel shear flow ū = U(z)i of constant
density. Then,

u(x, y, z, t) = [U(z) + ŭ1, ŭ2, ŭ3], (3.1)

where ŭ(x, y, z, t) is a disturbance that satisfies the continuity equation and is a solution
to the Navier–Stokes equation subject to (3.1) and relevant boundary conditions; for
example, plane rigid boundary conditions at z = 0, H say, or a rigid boundary at
z = −H with a free surface or fluid–fluid interface at z = 0. Of interest are the
pseudomomentum and generalized Stokes drift when ∇ × ŭ 6= 0; the case ∇ × ŭ = 0
was considered by Craik & Leibovich (1976).
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We confine attention to flows periodic in x and note that solutions for ŭ strictly
periodic in x at some instant t remain so for all time. We also assume H is
finite (we shall allow for H → ∞ in § 5). Then, the temporal eigenvalue spec-
trum of the linear operator acting on ŭ indicates that for each Fourier component
exp (ikαx)ûkl(z, t)[cos lβy, sin lβy, cos lβy] (k, l = 0,±1,±2, . . .) of ŭ at fixed Reynolds
number R, there exists a complete set of discrete eigenfunctions φnkl(z) and fnkl(z) with
eigenvalues ωn

kl for n = 1, 2, . . . ,∞ (Lin 1961). In particular, for symmetric wave pairs

ûkl(z, t) = exp (−iωn
klt)

[
k2α2

γ2
φnkl
′ − l2β2

γ2
fnkl ,

ikαlβ

γ2
(φnkl

′ + fnkl),−ikαφnkl

]
(k, l = 0,±1,±2, . . .) (n = 1, 2, . . . ,∞), (3.2)

where α and β are fixed wavenumbers in the streamwise and spanwise directions and
prime denotes d/dz.

Here, φnkl(z) is the nth Orr–Sommerfeld eigenfunction for wavenumber γ = (k2α2 +
l2β2)1/2 which satisfies

[−iγU∆ + iγU ′′ + R−1∆∆]φ = −iω∆φ, (3.3a)

subject to appropriate boundary conditions, while its counterpart fnkl(z) satisfies (as
a forced response) the vertical vorticity equation

[−iγU + R−1∆]f− iU ′φ = −iωf (3.3b)

in which ∆ ≡ d2/dz2 − γ2 (see also Craik 1970; Gustavsson & Hultgren 1980; Butler
& Farrell 1992).

In consequence, disturbances resulting from finite-amplitude waves may be formally
expanded as (j = 1, 2, 3)

ŭj(x, y, z, t) = εRe
{

exp (i$n
kl(t))E

n
jkl(z, t) cos [lβ(y + yl)− δj2 1

2
π]
}

(k, l = 0,±1,±2, . . .) (n = 1, 2, . . . ,∞) (3.4)

where repeated indices imply summation, $n
kl(t) = kαx − ω0n

klt and yl is a spanwise
offset that varies randomly with the counter l, with (from (3.2)),

En
jkl = Ankl(t)

[
k2α2

γ2
φnkl
′(z)− l2β2

γ2
fnkl(z),

ikαlβ

γ2

(
φnkl
′(z) + fnkl(z)

)
,−ikαφnkl(z)

]
.

Here, the complex amplitude (at kα, lβ and n) is εAnkl(t), where ε is characteristic of
the wave slope of the complete disturbance, and the eigenfunctions φnkl(z) and fnkl(z)
are unity-normalized. Given boundary conditions and details of the problem to hand,
e.g. water depth, fluid properties, stratification, etc., a specific equation can be derived
to define the complex amplitude (see Craik 1985 § 18). However, to ensure real physical
disturbances, it is necessary always that An−k(−l) = A∗nkl , where ∗ indicates complex
conjugate. Such analyses also relate temporal modulations of wave amplitude to the
wave period, typically with the scaling κ = ελt with λ > 0. Of course, the actual value
of λ is dependent upon boundary conditions and features pertinent to the problem;
for example, λ is typically 2 for amplitude modulations of weakly nonlinear surface
waves in inviscid fluid.

Finally, ω0n

kl = Re{ωn
kl} is the real part of the nth root of the linear dispersion

equation. To reduce clutter, however, we shall drop the n and write ω0
kl , noting that

although we retain all n for generality, it is reasonable, for most purposes, to restrict
attention to the least damped (n = 0) modes. Indeed, if the wavepacket (3.3b) is
weakly nonlinear and centred on a single wavenumber and frequency, then ω0

kl will
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reduce to a particular real root (of the linear dispersion equation) that is characteristic
of the wavenumber and the shear flow under consideration.

Turning now to (2.8), and writing Y = y + yl , we see that the displacements take
the form

ξj(x, y, z, t) = εRe
{

exp (i$n
kl(t))G

n
jkl(z, t) cos (lβY − δj2 1

2
π)
}
, (3.5)

where

Gn1kl = Inkl(z, t)

(
k2α2

γ2
φnkl
′(z)− l2β2

γ2
fnkl(z)

)
− ikαU ′(z)Kn

kl(z, t)φ
n
kl(z),

Gn2kl =
ikαlβ

γ2
Inkl(z, t)

(
φnkl
′(z) + fnkl(z)

)
, Gn3kl = −ikαInkl(z, t)φ

n
kl(z),

with the Lagrangian integrals

Inkl = exp (−i$n
kl(t))

∫ t

t0

Ankl(ζ) exp (i$n
kl(ζ))dζ (3.6)

and

Kn
kl = exp (−i$n

kl(t))

∫ t

t0

∫ p

t0

Ankl(ζ) exp (i$n
kl(ζ))dζdp. (3.7)

3.1. Averaging

In view of its importance vis à vis the invertibility of the mapping to GLM,
we look first at the Jacobian (2.3), whose portion to be averaged has the form
ξj[x(t), t]ξl[x(t), t]. Observe that it is evaluated at one instant in time t and thus at
one point along the mean trajectory x(t), as are all averages in the GLM formulation.
For the sake of generality, however, we shall assume that the components of all such
correlations are separated in time, say at t and s and thus evaluated at points x(t)
and x(s) along the mean trajectory. The reason for doing so will not be apparent until
later in the analysis (in § 4.2), where we cast our expressions for J , p and d , in terms
of Eulerian space–time correlations. So from (2.3), and using (3.5), we have

ξj[x(t), t]ξ`[x(s), s] = 1
4
ε2Njl(y)N`r(y)(Gnjkl(z, t) exp (i$n

kl(t)) + c.c.)

×(Gm`qr(z, s) exp (i$m
qr(s)) + c.c.) (3.8)

where Njl(y) = cos (lβY − δj2 π/2) and, in accord with k, l and n in (3.3b), we set
q, r = 0,±1,±2, . . . and m = 1, 2, . . . ,∞.

The GLM formulation permits any pertinent average, so with no loss of generality
we take first a streamwise average over 2π/α. Then, for any k and q, and on setting
s = t+ τ,

exp (i$n
kl(t)) exp (±i$m

qr(s))
x
=

1 for k = q = 0
exp (−ikαUτ)f(t; τ) for k = ∓q 6= 0
0 for k 6= ∓q 6= 0

 for all m, n, l, r.

Further, on allowing for all possible ω0
kl = kαcnkl and noting that cn−kl = cnkl , we see

that

f(t; τ) = exp (−ikα[(cnkl − cm∓kr)t− cm∓krτ]),
so that a subsequent average over time t, with τ = 0, renders f(t; τ)

t
zero for all
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k = ∓q 6= 0 unless m = n and r = l. In anticipation of a time average, therefore,
we set m = n and r = l, although we shall postpone imposing a time average until
later. In consequence, and because Gn`(−k)(−l) = G∗n`kl , the maximal portion of (3.8) that
survives both averages is

ξj[x(t), y, z, t]ξ`[x(s), y, z, s]
x

= 1
4
ε2Njl(y)N`l(y)

(
Gnjkl(z, t)G

∗n
`kl(z, s)

× exp (−ikα(U − cnkl)τ) + c.c.
)

(k, l = 0,±1,±2, . . .).

(3.9)

Furthermore, the requirement r = l acts to decompose the resulting average into
spanwise dependent and spanwise independent parts. This is reflected in the now
generalized Jacobian (2.3) which becomes

J(y, z, t; τ) = 1− ε2

8

{
1

2

[
BJ +

(
BJ +

2(kαlβ)2

γ2
CJ
)

cos 2lβY

]
exp (−iθnklτ) + c.c.

}
(3.10)

where BJ = k2α2(|φnkl |2Inkl(z, t)I∗nkl(z, s))′′,

CJ =
2l2β2

γ2
|φnkl ′ + fnkl |2Inkl(t)I∗nkl(s)− ([(|φnkl |2)′ + φnklf

n
kl
∗ + φnkl

∗fnkl]I
n
kl(z, t)I

∗n
kl(z, s))

′

and θnkl = kα(U − cnkl).
By entirely similar methods and by making use of the identity En

`kl = E∗n`(−k)(−l), we
use (3.4) and (3.5) to obtain terms of the form

ξj,1[x(t), y, z, t]ŭj[x(s), y, z, s]
x

= 1
4
ε2N2

jl(y)[ikαGnjkl(z, t)E
∗n
jkl(z, s) exp (−iθnklτ) + c.c.]

and

ξj,3[x(t), y, z, t]ŭj[x(s), y, z, s]
x

= 1
4
ε2N2

jl(y)[G′njkl(z, t)E∗
n
jkl(z, s) exp (−iθnklτ) + c.c.]

and variants thereof for the pseudomomentum (2.6) and generalized Stokes drift (2.4).
Then on writing

pj = ε2[P1, 0, P3] and dj = ε2[D1, 0, D3]

and on dropping the subscripts k, l and superscript n to reduce clutter, we obtain
generalized expressions for Pj and Dj that are functions of y, z, t and the time
separation τ. These take the form:

Pj = − 1
4

{
1
2
[Bj + Cj + (Bj −Cj) cos 2βY ] exp (−iθτ) + c.c.

}
(j = 1, 3), (3.11a)

and

P2 = 1
4

{
1
2
B2β sin (2βY ) exp (−iθτ) + c.c.

}
(3.11b)

where

B1 = iα

[(∣∣∣∣α2

γ2
φ′ − β2

γ2
f

∣∣∣∣2 + α2|φ|2
)
I(t)A∗(s) + iαU ′

(
α2

γ2
φ′φ∗ − β2

γ2
fφ∗

)
I(t)I∗(s)

+ α2U ′2|φ|2K(t)I∗(s)− iαU ′
(
α2

γ2
φφ∗′ − β2

γ2
φf∗

)
K(t)A∗(s)

]
,
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B2 =

∣∣∣∣α2

γ2
φ′ − β2

γ2
f

∣∣∣∣2 I(t)A∗(s)
−iαU ′

(
α2

γ2
φφ∗′ − β2

γ2
φf∗

)
K(t)A∗(s) + iαU ′

(
α2

γ2
φ′φ∗ − β2

γ2
fφ∗

)
I(t)I∗(s)

−α
2β2

γ4
|φ′ + f|2 I(t)A∗(s) + α2|φ|2(I(t)A∗(s) +U ′2K(t)I∗(s)),

B3 =

(
α2

γ2
φ′I(z, t)− β2

γ2
fI(z, t)− iαU ′φK(z, t)

)′(
α2

γ2
φ∗′ − β2

γ2
f∗
)
A∗(s)

+α2(φI(z, t))′φ∗A∗(s)

+iαU ′
(
α2

γ2
φ′I(z, t)− β2

γ2
fI(z, t)− iαU ′φK(z, t)

)′
φ∗I∗(z, s),

with

C1 =
iα3β2

γ4
|φ′ + f|2I(t)A∗(s), C3 =

α2β2

γ4
((φ′ + f)I(t))′(φ∗′ + f∗)A∗(s).

While the generalized Stokes drift becomes

D1 = 1
4

{− 1
2
iα[E1 +F1 + (F1 +F2) cos 2βY ] exp (−iθτ) + c.c.

}
, (3.12a)

D2 = 1
4

{
α2β

2γ2
E2 sin (2βY ) exp (−iθτ) + c.c.

}
, (3.12b)

D3 = 1
4

{− 1
2
iα[iαφ′φ∗I(t)A∗(s) + E3 + (E3 +F3) cos 2βY ] exp (−iθτ) + c.c.

}
, (3.12c)

with

E1 =

(
α2

γ2
|φ′|2 − β2

γ2
φ′f∗

)
I(t)A∗(s),

E2 =

[
β2 − α2

γ2
(|φ′|2 + φ′f∗) +

2β2

γ2
(fφ∗′ + |f|2)− φφ∗′′ − φf∗′

]
I(t)A∗(s)

+iαU ′(φφ∗′ + φf∗)K(t)A∗(s),

E3 = α2U ′|φ|2K(t)A∗(s) + iαφφ∗′I(t)A∗(s),

while

F1 = −iαU ′
(
α2

γ2
φφ∗′ − β2

γ2
φf∗

)
K(t)A∗(s)

+

(
α2

γ2
φφ∗′′ − β2

γ2
φf∗′

)
I(t)A∗(s) + 1

2
iαU ′′|φ|2I(t)I∗(s),

F2 =

(
α2 − β2

γ2
φ′ − 2β2

γ2
f

)(
α2

γ2
φ∗′ − β2

γ2
f∗
)
I(t)A∗(s),

F3 = iα

(
α2 − β2

γ2
φ′φ∗ − 2β2

γ2
fφ∗

)
I(t)A∗(s).

Observe that while the streamwise and normal (j = 1 and 3) components have the
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same form as J , i.e. spanwise independent and spanwise dependent parts, the (j = 2)
components have only the latter and are non-zero only in the presence of oblique
modes (i.e. β 6= 0).

3.2. Lagrangian integrals

It remains, of course, to evaluate the integrals (3.6) and (3.7) and the products
I(t)A∗(s), I(t)I∗(s), K(t)A∗(s) and K(t)I∗(s) appearing in (3.10) to (3.12). In order to
do so it is helpful to first rewrite them in a form that will become ultimately a power
series in terms of the small parameter ε. We thus assume each Ankl(t) is continuously
differentiable and then integrate by parts, to find

I(t) = exp (−iθt)

[
exp (iθζ)A

iθ

∣∣∣∣t
t0

− exp (iθζ)

(iθ)2

dA

dζ

∣∣∣∣t
t0

+

∫ t

t0

exp (iθζ)

(iθ)2

d2A

dζ2
dζ

]
, (3.13)

and

K(t) = exp (−iθt)

[
exp (iθp)A

(iθ)2

∣∣∣∣t
t0

− 2

∫ t

t0

exp (iθp)

(iθ)2

dA

dp
dp+

∫ t

t0

∫ p

t0

exp (iθζ)

(iθ)2

d2A

dζ2
dζdp

]

−
(
A− dA

dt

1

iθ

)∣∣∣∣
t=t0

exp (iθt0)

iθ
(t− t0). (3.14)

Observe that both integrals are oscillatory as exp (iθt) and that K(t) diverges
as (t − t0) if any A or dA/dt at t = t0 is other than zero. Such complications
are mathematical artifacts and arise because finite t0 implies finite wave amplitude,
which means that different particles in an averaged ensemble are located on different
streamlines. The resolution, as Craik (1982b) realized, is to require t0 → −∞ so that
the integral begins when the waves are infinitesimal. If in the embryonic stages of
each wave Re{A} ∝ exp (σt) say, then as t0 → −∞ all time derivatives with respect
to A, and A itself, are zero. So, on letting t0 → −∞ and on writing A in terms of the
timescale κ, then what remains of (3.13) and (3.14) is

I(t) =
A

iθ
− ελ

(iθ)2

dA

dκ
+ ε2λ exp (−iθt)

∫ t

−∞
exp (iθζ)

(iθ)2

d2A

dκ2
dζ, (3.15)

K(t) =
A

(iθ)2
− 2ελ

(iθ)3

dA

dκ
+ 2ε2λ exp (−iθt)

∫ t

−∞
exp (iθp)

(iθ)3

d2A

dκ2
dp

+ε2λ exp (−iθt)

∫ t

−∞

∫ p

−∞
exp (iθζ)

(iθ)2

d2A

dκ2
dζdp. (3.16)

3.3. Waves subject to slow modulations in amplitude

Evaluating the integrals (3.15) and (3.16) is straightforward if Ankl(t) is known, as
would be the case say in a direct simulation of a streamwise periodic wavy shear
flow, in which φnkl and fnkl are used as basis functions. However, before attempting
such a calculation it is appropriate to note that wave history is relegated solely to the
integral terms and that those terms are O(ε2λ). Thus, while wave history is crucial to
the correct evaluation of the integrals when the waves grow on the same timescale
as their period (i.e. λ = 0), it is far less important for waves growing more slowly
(λ > 1). Indeed, since a typical product in (3.10)–(3.12) has the form

I(t)A∗(s) =
A(t)A∗(s)

iθ
− ελA

∗(s)
(iθ)2

dA(t)

dκ
+ O(ε2λ) =

A(t)A∗(s)
iϑ

+ O(ε2λ) (λ > 1),
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where ϑnk = kα(U − cnk − ici
n
k) = kαUn

k with kαci = ελA−1dA/dκ, that product can be
evaluated – provided the waves are growing slowly – solely from the correlation of
instantaneous amplitudes at or near the time of interest.

In consequence, we restrict attention to temporal modulations in wave amplitude
that are slow compared with the wave period, i.e. λ > 1. Then,

I(t)A∗(s) ∼ A(t)A∗(s)
iϑ

+ O(ε2λ), I(t)I∗(s) ∼ A(t)A∗(s)
|ϑ|2 + O(ε2λ), (3.17a)

K(t)A∗(s) ∼ A(t)A∗(s)
(iϑ)2

+ O(ε2λ), K(t)I∗(s) ∼ A(t)A∗(s)
iϑ|ϑ|2 + O(ε2λ), (3.17b)

from which we can write (3.10)–(3.12) in terms of the amplitude products.
Then, the Jacobian becomes

J = 1− ε2

8

{
1
2
A(t)A∗(s)

[
GJ +

(
GJ +

2β2

γ2
HJ

)
cos 2βY

]
exp (−iθτ) + c.c.

}
, (3.18)

with

GJ =

( |φ|2
|U|2

)′′
, HJ =

2β2

γ2

|φ′ + f|2
|U|2 −

(
φφ∗′ + φf∗

|U|2
)′
−
(
φ′φ∗ + φ∗f
|U|2

)′
.

Accordingly, from (3.11), the pseudomomentum becomes

P1 = −1

4

{
A(t)A∗(s)

2
U∗
[
G1 +

(
G1 − 2β2

γ2
H1

)
cos 2βY

]
exp (−iθτ) + c.c.

}
, (3.19a)

P2 = −1

4

{
iβU∗

2α|U|2A(t)A∗(s)G2 sin (2βY ) exp (−iθτ) + c.c.

}
, (3.19b)

P3 = −1

4

{
A(t)A∗(s)

2iα
U∗
[
G3 +

β2

γ2
H3 +

(
G3 − β2

γ2
H3

)
cos 2βY

]
× exp (−iθτ) + c.c.

}
, (3.19c)

where

G1 =
α2

γ2

∣∣∣∣(φU
)′∣∣∣∣2 +

β2

γ2

∣∣∣∣fU +
U′φ
U2

∣∣∣∣2 + α2

∣∣∣∣φU
∣∣∣∣2 , H1 =

α2

γ2

(∣∣∣∣φ′U
∣∣∣∣2 +

∣∣∣∣fU
∣∣∣∣2
)
,

G2 =

∣∣∣∣α2

γ2
φ′ − β2

γ2
f

∣∣∣∣2
−U

′(U+U∗)
|U|2

(
α2

γ2
φφ∗′ − β2

γ2
φf∗

)
− α2β2

γ4
|φ′ + f|2 + α2|φ|2

(
1 +

U′2
α2|U|2

)
,

G3 =

(
α2

γ2

φ′

U −
β2

γ2

f

U −
U′
U2
φ

)′(
α2

γ2

φ∗′

U∗ −
β2

γ2

f∗

U∗ −
U′
U∗2φ

∗
)

+ α2

(
φ

U
)′
φ∗

U∗ ,

H3 =
α2

γ2

(
φ′ + f
U

)′(
φ∗ + f∗

U∗
)
.
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While from (3.12), the generalized Stokes drift becomes

D1 =
1

4

{
1
2
A(t)A∗(s)

[
I1 +

(
I1 +

2β2

γ2
J1

)
cos 2βY

]
exp (−iθτ) + c.c.

}
, (3.20a)

D2 =
1

4

{
iαβ

2γ2
A(t)A∗(s)I2 sin (2βY ) exp (−iθτ) + c.c.

}
, (3.20b)

D3 =
1

4

{
− 1

2
iαA(t)A∗(s)

[
I3 +

(
I3 − 2β2

γ2
J3

)
cos 2βY

]
exp (−iθτ) + c.c.

}
, (3.20c)

where

I1 = −α
2

γ2

(
φφ∗′

U
)′

+
β2

γ2

(
φf∗

U
)′

+
U′′|φ|2
2|U|2 ,

J1 =
α2

γ2

|φ′|2
U − β2

γ2

φ′f∗

U +
α2

γ2

fφ∗′

U − β2

γ2

|f|2
U ,

I2 =

(
φφ∗′

U
)′
−
(
φf∗

U
)′
− 2β2

γ2U|φ
′ + f|2,

I3 =

(U∗|φ|2
|U|2

)′
, J3 =

U∗
|U|2 (φ′φ∗ + fφ∗).

Remember that (3.18)–(3.20) are generalizations of J etc. (which we require in § 4.2),
and that if we wish to use this form directly, we must set τ to zero; each measure is
then a function solely of y, z and t. Furthermore, remember that the amplitudes and
eigenfunctions are summed as Ankl(t)A

∗n
kl(s) and φnkl(z)φ

∗n
kl over the relevant range of

n, k and l. As mentioned above, this is straightforward when Ankl(t) are known from a
direct simulation, but of particular interest is to determine p and d from correlations
that are measurable physically, and we shall discuss doing so in § 4.

Before doing so, however, we note that with k = n = 1, β = τ = 0 and t sufficiently
small that αci = Im{ω1

10}, then Re{A} = exp (αcit) and equations (3.19)–(3.20) reduce
to their two-dimensional counterparts given by Craik (1982b; his (3.3) and (3.4)) and
(3.18) by Phillips (1998a; his (5.15)). Accordingly, with the further restrictions that
U = f = 0 and φ = e%z but β 6= 0, we recover Craik & Leibovich’s (1976) D1

result (their (59)) for a discrete spectrum of irrotational oblique wave pairs of equal
amplitude.

3.4. Phase mixing

As noted above (see (3.10)–(3.12)), J and the streamwise and vertical components
of Pj and Dj are each composed of spanwise independent and spanwise dependent
parts, while P2 and D2 are strictly spanwise dependent. However, although spanwise
dependence at each lβ is reflected in terms of the form l2β2 cos [2lβ(y+yl)−δj2 π/2], the
overall dependence is subject to phase mixing between various Fourier components.
Indeed, if a fixed amount of wave energy is distributed between M discrete oblique
wave pairs of random phase, the nonlinear measures become more nearly uniform
spanwise as M is increased and depict no spanwise dependence in the limit M → ∞
(Craik & Leibovich 1976). In this same limit P2, D2 → 0; but this result does not mean
the surviving portions of Pj and Dj are due exclusively to two-dimensional waves
within the spectrum, rather oblique components also contribute to the spanwise
independent part, as we see (for example) in G1.
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4. Measurable quantities
4.1. Interfacial

Two different Eulerian correlations are relevant to the evaluation of (3.18)–(3.20).
The first pertains to surface waves where it is possible to measure the directional
instantaneous wave slope

ε(t) = 1
2
{Akl(t) exp (−iωklt)[kα exp (ikαx), lβ exp (ilβy)] + c.c.},

at some point (x, y) say, where Akl(t) is the amplitude of waves with wavenumbers
kα, lβ at time t, and ωkl is real. Knowledge of ε(t) then leads to the autocorrelation

εi(x, y, t)εi(x, y, t) = 1
4
{(δi1k2α2 + δ2il

2β2)Akl(t)A∗kl(t) + c.c} (i = 1, 2), (4.1)

either through a time (Bock & Hara 1995; Hara, Bock & Donelan 1997) or ensemble
average (Melville, Shear & Veron 1998) and ultimately the frequency–wavenumber
slope spectrum and thus Akl , from which we can extract Ankl as

Akl(t) exp (−iωklt) + c.c. = εAnkl(t)φ
n
kl(0) exp (−iω0

klt) + c.c. (4.2)

But to proceed we need φnkl(z) and that must be found by solving the relevant linear
eigenvalue problem given U(z) and the boundary conditions for the case at hand; see
§ 7. Of course, if the waves are irrotational, the process is somewhat simpler and such
an example is given by Phillips (2000b) using the continuous slope spectrum Smith
(1992) measured in the Pacific ocean.

4.2. Interior

The second measurable correlation pertains to the interior of the flow and follows
from the fluctuating velocity field in the form of space–time correlations Qij and Qjlk ,
defined by

ε2Qjl(y, z, t;Uτ, 0, 0, τ) = ŭj(x(t), y, z, t)ŭl(x(s), y, z, s)
x

= 1
4
ε2{En

jkE
∗n
lk exp (−iθτ) + c.c.} (4.3)

and

ε2Qjlk(y, z, t;Uτ, 0, 0, τ) = ŭj,k(x(t), y, z, t)ŭl(x(s), y, z, s)
x
.

Here, the time separation is τ and the spatial separation is r = Uτ. Observe
that (4.3) yields products as A(t)A∗(s), so that by suitable manipulation, namely,
differentiation with respect to x (prior to averaging) or integration with respect to
τ (after averaging), we can reproduce each of the components in (3.18)–(3.20) in
terms of Qij . Furthermore, because (3.18)–(3.20) assume slowly growing waves, it is
consistent (to leading order) to ignore any variation in A due to t when integrating
with respect to τ; thus, A(t)A∗(s) ≡ A∗(t)A(s) ≡ A∗(t)A(t) and θ ≡ αU. So, for example,∫ ζ

ζ0

ŭ1,1(t)ŭ1(s)
x
dτ = −ε

2

4

{
A(t)A∗(t)

1

2U
∣∣∣∣α2

γ2
φ′ − β2

γ2
f

∣∣∣∣2 (1 + cos 2βY )

× exp (−iθτ) + c.c.

}∣∣∣∣ζ
ζ0

,

which recovers the first term in P1 (see (3.11a) and B1). Note, too, that the space–time
correlation includes not only spanwise variations for all lβ, but contributions those
same lβ make to the spanwise independent part.

It is now evident why we sought the generalized form introduced in § 3.1; but
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this process also introduces double and triple integrals which, as we saw in § 3.2,
can introduce spurious divergent terms. To exclude such terms we must carefully
determine the limits of integration and this is best done by comparing the integral
form with a known solution to its counterpart in § 3.3.

Consider then the Jacobian (3.18), whose term |φ|2/|U|2 is approximated by the
double integral∫ κ0

κ?

∫ ζ

ζ0

Q33dτdζ =
ε2

4

{
1
2
α2A(t)A∗(t)|φ|2(1 + cos 2βY )

∫ κ0

κ?

∫ ζ

ζ0

exp (−iθτ)dτdζ + c.c.

}
,

(4.4)

and restrict attention to monochromatic plane waves, so k = n = 1 and l = 0. On
integrating the right-hand side of (4.4) we see (i), that divergent terms are excluded
provided θζ0 = ±Nπ (N = 0, 1, 2, . . .) and (ii), that the first term in (3.18) (with τ = 0)
is recovered provided the limit κ0 = ζ0 and the limit θκ? = ±(N + 1)π/2. Of course,
to expedite the calculation, it is prudent to confine attention to θκ? > 0 and restrict
N to N = 0. Then the inner integral is evaluated from ζ0 = 0 to ζ and the outer
integral from κ? to 0. In short, κ? is chosen to ensure the value of the double integral
is −θ−2. Indeed, in general, we require all integrals to have the value sgn θ−m, where
m is the degree of integration.

Of course there must also be a θnkκ
?n
k = 1

2
π synonymous with the first zero of the

double integral for each k, l and n in a spectrum of waves; but this is not immediately
helpful given Qij for the spectrum with the intent to proceed numerically. In this
instance, we determine κ? as follows.

We first non-dimensionalize Qij and τ as Rij = Qij/ŭiŭj and η = τθ. Then, with no
loss of generality and in accord with our findings above, define θ by the requirement

R33|η=1 = 1
2
. (4.5)

Next, we note that ∫ κ?

0

Q33dτ =
ŭ3ŭ3

θ

∫ η?

0

R33dη

and that to concur with our findings above we must define η? = κ?θ by the constraint∫ η?

0

R33dη = 1. (4.6)

Lastly, two further conditions are necessary to proceed: (i) that the double integral
have its first zero at η = η?, and (ii) that the triple integral have its first zero at η = 0.
These requirements are satisfied by noting the class of kernel, i.e. even or odd, and by
appropriately ordering the integration. Examples using this procedure are given in § 6.
Finally, since Re{iαU∗} = −A−1dA/dt, we rewrite those components premultiplied by
i, e.g. P3 and D3, in terms of A∗dA/dt and recover them by taking the derivative of
Qij with respect to time (see (4.10) and (4.13)).

Having learned how to determine κ? and evaluate our multiple integrals, we now
return to our nonlinear measures in integral form. Here to O(ε2), the Jacobian is

J(y, z, t) = 1 +
1

2

[
∂2

∂y2

∫ 0

κ?

∫ ζ

0

Q22dτdζ

+
∂2

∂y∂z

∫ 0

κ?

∫ ζ

0

(Q32 + Q23)dτdζ +
∂2

∂z2

∫ 0

κ?

∫ ζ

0

Q33dτdζ

]
, (4.7)
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while, on noting∫ ζ

ζ0

ŭi,1(t)ŭj(s)
x
dτ = −

∫ ζ

ζ0

∂

∂r
ŭi(t)ŭj(s)

x
dτ = −ε2Qij

U

∣∣∣∣ζ
ζ0

,

the O(ε2) x-, y- and z-components of the pseudomomentum are

P1(y, z, t) =

∫ κ?

0

∂

∂r
Qjjdτ+U ′

∫ 0

κ?

∫ ζ

0

∂

∂r
(Q31 − Q13)dτdζ

+U ′2
∫ 0

κ?

∫ χ

0

∫ ζ

κ?

∂

∂r
Q33dτdζdχ, (4.8)

P2(y, z, t) =
1

2

∂

∂t

{∫ 0

κ?

∫ ζ

0

Qjj2dτdζ +U ′
∫ 0

κ?

∫ χ

0

∫ ζ

κ?
(Q312 − Q132)dτdζdχ

− U ′2
∫ 0

κ?

∫ γ

0

∫ χ

κ?

∫ ζ

0

Q332dτdζdχdγ

}
(4.9)

and

P3(y, z, t) =
1

2

∂

∂t

{∫ 0

κ?

∫ ζ

0

Qjj3dτdζ +U ′
∫ 0

κ?

∫ χ

0

∫ ζ

κ?
(Q313 − Q133)dτdζdχ

+U ′′
∫ 0

κ?

∫ χ

0

∫ ζ

κ?
Q31dτdζdχ−U ′2

∫ 0

κ?

∫ γ

0

∫ χ

κ?

∫ ζ

0

Q333dτdζdχdγ

− U ′U ′′
∫ 0

κ?

∫ γ

0

∫ χ

κ?

∫ ζ

0

Q33dτdζdχdγ

}
. (4.10)

Lastly, the O(ε2) x-, y- and z-components of the generalized Stokes drift are

D1(y, z, t) =
∂

∂z

∫ κ?

0

Q31dτ− 1
2
U ′′
∫ 0

κ?

∫ ζ

0

Q33dτdζ, (4.11)

D2(y, z, t) = −1

2

∂

∂t

{∫ 0

κ?

∫ ζ

0

Qj2jdτdζ +U ′
∫ 0

κ?

∫ χ

0

∫ ζ

κ?
Q321dτdζdχ

}
(4.12)

and

D3(y, z, t) =
κ?

2

∂D3

∂t
where κ?D3 = − ∂

∂z

∫ 0

κ?

∫ ζ

0

Q33dτdζ. (4.13)

As a check we return to our example with k = n = 1; then from (4.3) with β = 0
we have

Q11, Q13, Q33 = 1
4
ε2{A(t)A∗(t)

[|φ′|2, ikαφ′φ∗, k2α2|φ|2] exp (−iθτ) + c.c.},
which, when substituted into our integral equations (4.7) to (4.13), recover (3.18)–
(3.20) with τ = 0. Then, on setting A(t) = Re{exp (αcit)}, we recover Craik’s (1982b)
expressions for Dj and Pj (j = 1, 3) as before.

5. Wave fields with a continuous spectrum of wavenumbers
Consider now a three-dimensional wave field composed of symmetric wave pairs

with amplitudes that may vary from pair to pair, subject to the boundary condition
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|H | → ∞ (see § 3). Then, the waves comprise a continuous spectrum which, we assume,
has finite total energy and Fourier components with random phases. Our intent, as
above, is to express pj and dj in terms of space–time correlations.

The ensuing analysis will, of course, mimic our work above, but with summations
replaced by integrals over wave space. However, since (4.7)–(4.13) are devoid of
explicit summation over wave space and streamwise periodicity, they alone must
carry over to the case of a continuous non-periodic spectrum. Furthermore, phase
mixing (see § 3.4) necessitates that spanwise variations in Pj and Dj have statistically
zero variance and thus no structure, leaving, in essence, a two-dimensional rectified
second-order field. Thus, J simplifies to

J(z, t) = 1 +
1

2

∂2

∂z2

∫ 0

κ?

∫ ζ

0

Q33dτdζ,

and P2, D2 → 0. The remaining expressions (4.8)–(4.13) are essentially unchanged
except that they are now solely functions of z and t.

Hence, our object would appear complete in that we have obtained expressions for
J , Pj and Dj that are consistent for discrete and continuous spectrums of rotational
waves and which are expressed in terms of measurable quantities. However, previous
attempts to express Di and Pi in terms of space–time correlations are at variance with
(4.7) through (4.13).

5.1. Previous attempts

Attempts to express Dj and Pj in terms of space–time correlations date from Lumley
(1986), Phillips (1988) and Leibovich (1992). Lumley took an Eulerian approach and
confined attention to Dj , while Phillips and Leibovich dealt with GLM to derive
Pj; Leibovich also gives a cursory overview of the derivation whereas Phillips (1988,
1991) simply states the results. Although their limits of integration are undefined,
their lead terms for P1 and D1 concur with (4.8) and (4.11) but their additive terms,
i.e. those multiplied by U ′ and U

′′
, do not. To conclude the present work, therefore,

we must resolve the variance.
We find that the variance is, in essence, due to the choice of t0. Recall that values

other than the limit t0 → −∞ ensure divergent behaviour (see § 3.2) and that while we
use the appropriate limit, previous authors set t0 to zero. Furthermore, consistent with
finite t0, they are able to cast (2.8) into the form given by Leibovich (1992; his (30)),
which leads to very different results for the multiple integrals and thus the variance.

6. An example
As an example, we consider constant-mass-flux plane channel-flow subject to a

discrete spectrum of two- and three-dimensional progressive waves; and, in particular,
the flow used by Kim, Moin & Moser (1987) to simulate low-Reynolds-number
turbulent channel flow. Here, discrete spectral techniques were used to approximate
the Navier–Stokes equation under the assumption that the flow is streamwise and
spanwise periodic. Furthermore, the chosen wave spectrum was sufficiently large (192-
streamwise× 129-spanwise modes) for spanwise variations to phase mix to almost zero
(see § 3.4). Reynolds numbers, based on channel half width and centreline (friction)
velocity were 3260 (180). Finally, the calculation was continued over sufficient time for
credible statistics to be obtained and this enabled Kim & Hussain (1993) to calculate
space–time correlations, which Phillips (2000a) later modelled.
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Figure 1. The time κ? with distance from the wall. Both variables are in wall units: κ?
+
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and z+ = zUτ/ν. The channel centreline is at z+ = 180.

Phillips’ model is based upon the Kovasznay–Corrsin conjecture modified for shear
flows, and reduces, for the correlations defined by (4.3), to Qij = ŭiŭj R(η), where

R(η) = (1 +F(η))−3/2, F(η) = η2(1 + Bη2)−1/2, (6.1)

with B a constant defined by the requirement R(1) = 1
2
. Since the model is continuous

in space and time, it is ideal for our purposes and we employ it to calculate measures
mandatory to the GLM description of plane wavy shear flows, namely, J , P1, D1 and
D3. The same measures are also crucial to related studies of the instability of the flow
to streamwise vortices and the subsequent dynamical behaviour of the said vortices
(Phillips 1998a, b).

6.1. Non-periodic space–time correlations

The class of space–time correlations defined by (6.1) is noticeably different from
what we studied in § 4.2, and before proceeding it is appropriate to discuss this class,
beginning with the simpler form

R(η) = (1 + Cη)−3/2 (η > 0), (6.2)

which is readily integrable. Here, the ensuing integrals are not oscillatory: rather the
first is bounded while the double and triple integrals diverge. Of interest, however, is
whether (6.2) is an admissible form vis à vis the constraints (4.5) and (4.6) and the
conditions stated in § 4.2. In fact it is; from (4.5) we find that C ≈ 0.5874 and from
(4.6) that η? ≈ 1.7102, at which point (η = η?) the double integral is necessarily zero
(first condition). Furthermore, the triple integral is zero at η = 0 (second condition).
In short, generic variants of (6.1) may be used to evaluate (4.7)–(4.13).

Returning now to (6.1), we find B ≈ 1.8982 and that η? = κ?θ ≈ 1.5818. Of course,
knowledge of ŭiŭj is necessary to deduce θ and κ? which both vary with z, and that
variation (κ? in wall units) is sketched in figure 1. The Jacobian J is plotted in figure
2. Note that J remains non-zero as it must for the mapping from the true Lagrangian
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Figure 2. The Jacobian and components of the generalized Stokes drift and the pseudomomentum
(relative to Uτ) with distance from the wall z+ = zUτ/ν in a discrete spectrum of progressive waves
in plane channel flow. The flow is that of Kim et al. (1987) which models low-Reynolds-number
turbulent channel flow. The channel centreline is at z+ = 180 and the mean velocity there is
U/Uτ = 18.3.

to the generalized Lagrangian mean to remain invertible. The components P1, D1 and
D3 relative to the friction velocity Uτ = (νU ′|z=0)

1/2 are also plotted in figure 2.

6.2. Results

Observe that P1, which is negative throughout the domain, mimics its counterparts
in generic studies of inviscid wavy shear flows (Craik 1982c; Phillips & Wu 1994;
Phillips & Shen 1996). However, while the inviscid case depicts a singularity at the
boundary (z = 0), viscosity here enters to bring P1, D1 and D3 to zero. Moreover,
although P1 6= D1 (because the wave field is rotational), the two components share the
same sign over much of the layer. Indeed, the Lagrangian-mean or net mass transport
velocity exceeds U(z) only in the wall region, in accord with the convection velocity
deduced from space–time correlations both experimentally (Kreplin & Eckelmann
1979) and numerically (Kim & Hussain 1993). On the other hand, D3 is positive
(negative) in the inner region if the wave field if growing (decaying) and changes
sign in the logarithmic (i.e. overlap) region. In a scenario where the mean wave field
cyclically grows and decays, therefore, we should expect a cyclic mass transfer from,
and then towards, the wall.

As for magnitudes, we see that P1 has a peak value of about 1
2
Uτ, while D1

varies by almost 2Uτ. Interestingly D1 changes sign about 12.5 viscous units from the
wall, a point coincident with the minimum in P1 and the point at which turbulence
production is a maximum. It is also the point at which D′1 is a minimum and occurs
near the centre of a thin (15 viscous units) layer in which D′1 < 0. This layer of highly
sheared Stokes drift is at the heart of the wall region, long known for its streaks
and streamwise vortices, which are thought to play a crucial role in the generation
and regeneration of turbulence. Such structures are, of course, secondary to the
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primary (spanwise independent) Lagrangian mean flow exposed in this example, but
it does not seem unreasonable to speculate that the narrow layer of D′1 < 0 and its
coincidence with the minimum in P1, are together pivotal to the (currently unknown)
nonlinear instability mechanism which spawns wall-layer structures.

7. Discussion
Although we have expressed J , Pj and Dj in terms of measurable Eulerian quantities,

the path to their evaluation is not always straightforward. For example, suppose we
require Pj and Dj in the water beneath wind-driven surface waves. Here (4.1) is
measurable, but in order to evaluate (4.2) we require φnkl (and possibly fnkl) which
must be found by solving the linear eigenvalue problem defined by the coupled air–
water problem. This was done by Morland & Saffman (1993), but there is a problem.
As is the case in such stability problems, the phase velocities of growing waves are
subject to a circle theorem, which, in this instance, decrees that it (the phase velocity)
should fall between the maximum air- and minimum water-velocity. This necessitates
critical layers, and the mapping upon which GLM is based breaks down in the vicinity
of critical layers (at least in a discrete spectrum of waves; see § 2.2 and Phillips 1998).
Laboratory data (Melville et al. 1998) of growing wind-driven surface waves indicate
that critical layer(s) occur only in the air, so that GLM can be meaningfully applied
to events in the water. Of course, whether this is a general result for wind-driven
waves is unclear; rather the point to note is that each calculation must be taken on
a case by case basis.

Alternatively, we can evaluate J , Pj and Dj in the interior from knowledge of
Eulerian space–time correlations, as was done in our examples in § 6. This approach
can be applied to both discrete and continuous spectrums of waves provided J is
non-zero, as discussed in § 2. However, of particular interest is whether (4.7)–(4.13)
carry over to flows which violate, at some wavenumbers, the assumptions we have
invoked.

In deriving (3.18)–(3.20), we assumed waves with amplitudes that grow on a
timescale significantly greater than the wave period (λ > 1). Equations (3.18)–(3.20)
were then expressed (as (4.7)–(4.13)) in terms of velocity correlations, which are,
in essence, measures of the kinetic energy of velocity fluctuations. Two features
of these correlations are of interest: the first is that they are dominated by that
portion of the frequency–wavenumber spectrum which is most energetic; the second
is that the rectification process inherent in realizing the correlations acts to suppress
less energetic high-frequency high-wavenumber components of the spectrum. Thus,
provided that the most energetic fluctuating components of the flow satisfy our
assumptions, at least on average, there would seem to be a reasonable case to employ
(4.7)–(4.13), even though other portions of the frequency–wavenumber spectrum
violate the assumptions.

Prima facie members of this class of flows are those subjected to wave forcing
at wavenumbers noticeably smaller than those dominant in the unforced flow. For
example, turbulent boundary-layer flow over rigid wavy walls of small amplitude
(Phillips et al. 1996) and the turbulent shear flow (in both the water and the air)
associated with wind-driven surface waves (Phillips, Wu & Jahnke 1999).

However, from a strictly de rigueur viewpoint the present analysis is concerned
with small-amplitude waves. Of course, a strength of GLM is that theories and flow
equations can be derived in its setting which are exact for finite-amplitude waves, so
it is pertinent to ask to what point our analysis is valid for finite-amplitude waves,
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or, more precisely, waves with O(1) slope. The answer is (2.2) because (2.4), (2.6) and
(2.8) for pl , dl and ξl each assume convergent expansions in terms of wave slope.
However, the techniques employed in § 3, at least until § 3.3, would carry over to the
larger-amplitude case, provided we could credibly evaluate (2.7) for the displacement
field, and thence deduce the Lagrangian velocity perturbation, which would together
yield the pseudomomentum (2.2).

I am grateful to Professor A. D. D. Craik for numerous helpful comments. The work
was supported by the National Science Foundation through grants OCE-9696161 and
OCE-9818092.
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